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to chlorine atoms on adjacent molecules), while the 
closest U-C1 distance (from uranium to chlorine 
atoms on the same molecule) would remain 
unchanged, again as observed. 

Diffraction data can only tell us the average struc- 
ture of this material, but all four observed changes 
in this average structure (strong vibration of CI per- 
pendicular to the UC1 bond, expansion of the c axis, 
vibration of the entire molecule along c, and con- 
stancy of the U-C1 bond lengths within a molecule) 
strongly suggest that the phase transition observed 
by DEA can only involve the onset of hindered rota- 
tion of UCI4 molecules about their unique z axis. 

Many examples of such phase transitions involving 
hindered rotations are known, the most famous 
examples being the ammonium halides, where the 
NH4 tetrahedra commence rotation even at low tem- 
perature. Levy, Sanger, Taylor & Wilson (1975) have 
found similar hindered rotations commencing at high 
temperature in halide octahedra such as MoF6, and 
no doubt many others will be found when structural 
measurements close to the melting point become more 
common. Such dynamic disorder, though strongly 
suggested by the present elastic diffraction measure- 
ments, could only be proved using inelastic scattering 
techniques. 

Apart from offering an explanation for a phase 
transition in this class of materials, we have also 
demonstrated that such compounds form essentially 
simple molecular structures made from UX4 units. 
In fact, these UC14 units probably remain intact even 
in the liquid phase. This simple molecular picture 
contrasts with the more complex coordinations pre- 
viously suggested for uranium in such compounds. 

Finally, at the other extreme, we might have expec- 
ted that at least one more phase transition would 
lower the symmetry at low temperature. The volume 
of the structure could be reduced by a static co-related 
tilting of the tetrahedra, with the chlorine atoms mov- 

ing toward the z-axis channels, and such cooperative 
• static rotations of tetrahedra are well known (e.g. in 

BiVO4, David, Glazer & Hewat, 1979). However, in 
the case of UC14 the structure remains tetragonal 
down to the lowest temperatures. 
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Abstract 

The incommensurate structure of a mullite, 
A12[A12+2x, Si2-2x]O~o-x, with x = 0.40, has been sol- 

* Present address: The Geophysical Laboratory, Carnegie Insti- 
tution of Washington, 2801 Upton St. NW, Washington, DC 20008, 
USA. 

ved by the analysis of Patterson functions constructed 
from satellite intensity data collected by single-crystal 
X-ray diffractometry. The analysis shows that the 
incommensurate modulation is comprised of two sets 
of ordering patterns (difference structures) which 
have different symmetries, and which are modulated 
in quadrature through the crystal. One difference 
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structure belongs to the Shubnikov space group 
Pcnnm, and is shown to order 0 atoms and vacancies 
on the bridging oxygen site, Oc, of the double tetrahe- 
dral chains of mullite. There is also an associated 
ordering of overall site occupancy between the two 
tetrahedral sites within the structure. The second 
difference structure has symmetry P~bnm, and orders 
aluminium and silicon between the two tetrahedral 
sites. The small displacements of the 0 atoms associ- 
ated with tetrahedral site ordering have also been 
defined. The extreme stability of the mullite structure 
is shown to be due to its employing two ordering 
schemes, both of which resemble ordering patterns 
found in the related stoichiometric structures, sil- 
limanite and ,-alumina. In addition, it is shown that 
these two ordering patterns fit together in such a way 
as to allow the incommensurate mullite structure to 
employ both ordering schemes simultaneously in 
approximately one-third of the crystal volume. 

Introduction 

Mullite is an aluminosilicate refractory with composi- 
tion Al2[Al2+2,,Si2-2x]O~o-x, with the compositional 
variable x ranging (in principle) from zero to unity. 
When x = 0 the structure is that of (disordered) sil- 
limanite, AI2SiOs, while at x = 1 it resembles the  
structure proposed for the iota polymorph of alumina, 
A1203. This range of composition is based upon the 
exchange 2Si 4+ + 0 2- = 2 A I  3+ + [--], where [] rep- 
resents an oxygen vacancy. The structure of mullite 
can therefore be thought of as being derived from 
that of disordered sillimanite by the removal of oxy- 
gen anions and the exchange of aluminium for silicon 
(e.g. Angel & Prewitt, 1986). In order to accommodate 
this compositional variation, mullite develops an 
incommensurate structure whose periodicity varies 
continuously with composition. 

[ ' I - -  A ~l./.~ ~ / AL~ 

T~ / /O~Od-'= 

Fig. 1. The derivation of  the average structure of  mullite from 
sillimanite. Operation of  the exchange 2Si +÷ + 0 2. ~ 2AP ÷ 
requires the formation of  oxygen vacancies on the Oc sites. The 
formation of  one such vacancy at, for example, x = O, y = ½ leads 
to the transfer of  the adjacent tetrahedral cations to T* sites, 
accompanied by the displacements of  0 atoms indicated by 
arrows. 

The average structure of mullite consists of chains 
of edge-sharing AIO6 octahedra which run parallel 
to the c axis. Parallel to these are double chains of 
AI/Si tetrahedra, denoted T (Fig. 1). The oxygen 
anions removed from the structure come from the Oc 
site which provides the central cross link of the double 
chains. Removal of such an O atom reduces to three- 
fold the coordination of the two adjacent tetrahedral 
(T) sites. Such a configuration is unstable, and the 
cations are transferred from these positions to adja- 
cent, more distorted, T* sites (Fig. 1). This transfer 
of tetrahedral cations is accompanied by displace- 
ments of the coordinating oxygen anions as indicated 
in Fig. 1. This pattern of tetrahedral and Oc site 
occupancies represents the average structure of mul- 
lite and has been determined in several structure 
refinements (Sadanaga, Tokonami & Takeuchi, 1962; 
Burnham, 1964; Durovic, 1969; Durovic & Fejdi, 
1976). More recently, Angel & Prewitt (1986) used 
high-order tensor coefficients in a refinement to iden- 
tify the displacements of the Oab and Od atoms 
associated with the transfer of cations between the T 
and T* sites. 

In addition to the Bragg reflections from which the 
average structure is determined, diffraction patterns 
of mullites contain a number of additional diffraction 
maxima (Agrell & Smith, 1960). The most intense of 
these are pairs of satellites disposed around the posi- 
tions of Bragg reflections which arise from ordering 
in sillimanite, but which are absent from mullite 
(Fig. 2). The presence of such satellites around l=  
half-integer positions in diffraction patterns from 
mullite indicates that some form of ordering is 
developed within the mullite structure which doubles 
the c axis to that of sillimanite, and which has a long 
and incommensurate periodicity along the a axis. 

==001 D • 201 
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Fig. 2. a*-c* reciprocal-lattice section ofmullite, for which h = odd 
reflections are absent (open squares). The crossed square rep- 
resents the position of  the ordering reflections in sillimanite, but 
which are absent from mullite. The filled circles indicate the 
positions of  the satellites observed in mullite. Cameron (1977a) 
showed that their wavevector, $, lies parallel to a* for composi- 
tions 0 . 2 < x < 0 . 5 ,  and that its modulus varies linearly with 
composition in this range. 
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In this paper we describe a new analysis of these 
satellite reflections which represents the first full 
application of various techniques recently developed 
by McConnell & Heine (1984, 1985b) for the analysis 
of incommensurate structures. In particular, the pre- 
cise symmetry analysis of the incommensurate modu- 
lation (McConnell & Heine, 1984) is used to interpret 
various Patterson functions (McConnell & Heine, 
1984) and projections (McConnell & Heine, 1985b) 
calculated from satellite intensities alone. These are 
'difference Pattersons' (Freuh, 1953; Takeuchi, 1972), 
and are related to  differences between the ordering 
schemes and the average structure of the material. 
Unlike previous methods used to analyse satellite 
data, these Patterson functions require no prior 
assumptions in their interpretation. The fact that we 
have achieved a complete and self-consistent struc- 
tural analysis (apart from a little uncertainty over 
A1/Si distributions due to their similar X-ray scatter- 
ing factors) indicates the power of these methods. 
We should emphasize that the symmetry analysis 
carded out by McConnell & Heine (1984, 1985b) is 
quite independent of the mechanism proposed by 
Heine & McConnell (1984) for the origin of incom- 
mensurate structures in insulators, and thus the valid- 
ity of the analytical methods employed here is not 
dependent upon the mechanism responsible for the 
incommensurate modulation in mullite. However, we 
do believe that mullite is a good example of this 
particular mechanism, in that the analysis shows that 
the incommensurate structure arises from the modula- 
tion in quadrature (that is displaced by a phase of 
+90 °, or a distance of h/4, along the modulation 
wave) of t w o  ordering schemes with different 
symmetries. 

We shall demonstrate that the first ordering scheme, 
or difference structure, orders oxygens and vacancies 
on the Oc sites. Coupled with this is an ordering of 
tetrahedral site occupancies (A1 plus Si) between the 
T and T* sites, such that a vacancy on an Oc site 
gives rise to the transfer of a cation (A1 or Si) from 
the 'normal' tetrahedral site T to the 'alternative' site 
T*. This is essentially the same ordering scheme as 
seen in the average structure, and generates a structure 
which resembles that of the iota polymorph of 
alumina. 

The second component structure closely resembles 
that of sillimanite. Ordering of oxygens and vacancies 
is not permitted by the symmetry and, as a con- 
sequence, the overall occupancies of the tetrahedral 
sites remain approximately the same as those of the 
average structure. The Patterson functions do show 
evidence of ordering of A1 and Si on the sillimanite 
pattern, accompanied by small displacements of all 
of the O atoms. Taken together these displacements 
are equivalent to rotation of the A106 octahedra. 
Precisely the same distortions are present in the struc- 
ture of sillimanite. 

The exceptional stability of the mullite structure 
therefore derives, in part, from the presence of both 
of these ordering schemes within the structure. 
Examination of the way in which these ordering pat- 
terns are distributed within the crystal shows that they 
are able to co-exist simultaneously in approximately 
one-third of the crystal volume. It is this overlap 
which is the source of the interaction between the 
ordering schemes which stabilizes the incommensur- 
ate structure of mullite. 

Previous models 

Various models have been proposed for the ordering 
in mullite. Those based upon high-resolution trans- 
mission electron microscope (HRTEM) studies 
(Nakajima & Ribbe, 1981; Yla-Jaaski & Nissen, 1983) 
favour antiphase domain or block structures, with the 
oxygen vacancies concentrated on the antiphase 
domain boundaries (a.p.b.'s). The incommensurate 
repeat corresponding to the satellite spacings arises 
from the average spacing of the a.p.b.'s not being a 
commensurate multiple of the average structure. 
However, HRTEM imaging studies suffer from the 
strong interaction of electrons with crystalline speci- 
mens which leads to much stronger double diffraction 
effects in the electron microscope than occur for X-ray 
diffraction. These can often generate diffracted beams 
that appear to correspond to higher-order satellites: 
The inclusion of such beams in the formation of an 
image inevitably leads to the 'squaring up' of the 
high-resolution image of a modulated structure, so 
that it appears to consist of domains. Although some 
squaring up of the modulation might be expected in 
mullite, neither of the models proposed in these two 
studies is capable of accommodating the composi- 
tional range 0 < x < 0 . 5 .  They do however provide 
possible models for high-alumina mullites (x> 0-5) 
in which the wave vector of the modulation is not 
parallel to a*. Such structures are beyond the scope 
of the current paper. 

By contrast, X-ray diffraction avoids, for the most 
part, problems of double diffraction. It has one further 
advantage over TEM; the intensity data from the 
satellites and from the Bragg reflections can be collec- 
ted and analysed separately, so that the ordering can 
be investigated apart from contributions from the 
average structure. However, the one disadvantage of 
an X-ray diffraction experiment is that it only 
provides a time-and-space average over the entire 
specimen, rather than direct information on local 
environments. 

Tokonami, Nakajima & Morimoto (1980) investi- 
gated satellite and diffuse intensity from a mullite of 
composition x=0.372. They suggested that oxy- 
gen/vacancy ordering results in the clustering of 
vacancies in an incommensurate structure which they 
modelled with a large supercell. In principle, the 
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analysis of satellite intensity on the basis of a supercell 
should result in a structure identical to that produced 
by Patterson analysis. However, as Tokonami, 
Nakajima & Morimoto (1980) pointed out, conven- 
tional refinement methods are unable to distinguish 
between many different supercell models because of 
the very similar R values which result. 

Saalfeld (1979) also suggested that the oxygen 
vacancies formed clusters, but within a smaller, 10a x 
b x 2c, supercell. His model, based upon an optical 
transform of satellite intensity data, includes some 
features similar to those that result from our Patterson 
analysis. Saalfeld's model includes two types of 
tetrahedral double chains; one like those found in 
sillimanite, and the other arising from the removal of 
alternate Oc bridging oxygens along the c axis. In 
our model all of the chains have a proportion of Oc 
oxygens removed, the proportion varying from chain 
to chain. However, the arrangement of the two types 
of chains in Saalfeld's model is such that there is no 
periodicity within the structure which corresponds to 
the observed spacing of satellites in mullite diffraction 
patterns. In fact, structure-factor calculations show 
that Saalfeld's (1979) 10a supercell model generates 
greater diffraction intensities at + lsl than at ±lsl. 
Such intensity has not been reported for any mullite. 

The results of this study differ from the models 
previously proposed for mullite in four major 
respects. Most significantly, it is shown that not one 
but two distinct ordering patterns are present within 
the mullite structure. Secondly, the redistribution of 
aluminium and silicon between the two tetrahedral 
sites is shown to be a major component of the ordering 
schemes. Thirdly, the oxygen vacancies are not 
clustered, but are distributed throughout the struc- 
ture. Finally, the distortions of the oxygen packing 
which accompany the ordering on the tetrahedral 
sites are identified for the first time. 

Experimental 

The mullite crystal used for this study was the same 
as that whose average structure was reported by Angel 
& Prewitt (1986). It was previously described as 
sample no. 5 by Cameron (1977a, b), and has a com- 
position corresponding to x=0.40 ,  with trace 
amounts of iron. Cell parameters are given by Angel 
& Prewitt (1986). Single-crystal X-ray precession 
photographs of several fragments of this sample all 
showed moderately sharp satellite reflections around 
l =½ positions of the average structure (Fig. 2). The 
satellite vector s (Fig. 2) was parallel to a*, and had 
a magnitude of 0.30a*. 

Intensity data from the satellite reflections were 
collected on a Picker four-circle diffractometer with 
to-20 scans in a constant precision mode ( tr l / I< 
0.01, maximum count time 300 s) and with graphite- 
monochromatized Mo Ka radiation (A = 0.7107 A). 

Satellites in one octant of reciprocal space were col- 
lected out to 20 = 90 °, using as a standard reflection 
the 362 Bragg peak. A second data collection out to 
20 = 110 ° of all the satellite pairs around Okl Bragg 
positions was also carried out, in order to provide a 
check on the symmetry analysis of mullite of McCon- 
nell & Heine (1985a). The raw data were corrected 
for Lorentz and polarization effects, but no correc- 
tions were made for absorption [ / z ( M o K a ) =  
10.7 cm -1] or extinction. The presence of satellites 
around positions in the diffraction pattern of the 
average structure which have half-integer values of l 
indicates that the unit cell of the ordered structure 
has a doubled c axis of 5.77.~. Each satellite pair 
was indexed on this doubled cell so that they only 
occur for odd values of I. 

The Patterson maps used in this study were calcu- 
lated using programs written around the Cambridge 
Crystallography Subroutine Library (CCSL, Mat- 
thewman, Thompson & Brown, 1982). In order to 
calculate the plus and minus Pattersons (McConnell 
& Heine, 1984, 1985b), the satellite intensities are 
shifted to the Bragg position central to each pair. 
Such a shift should be accompanied by a correction 
to the intensities to allow for the variation of scatter- 
ing factors with sin O/A (e.g. Cochran, 1968). Such a 
correction was not made as it requires a knowledge 
of the distribution of scatterers giving rise to the 
satellite intensities. However, calculation indicated 
that, in the worst possible case, such corrections 
would amount to less than 7% of the structure factor 
(5% of the intensity), and in most cases are less than 
2%. 

Analysis of component structures 

Heine & McConnell (1984) showed that, on the basis 
of Landau theory, an incommensurate structure could 
develop from an ordering transition in insulators pro- 
viding certain symmetry requirements are fulfilled. 
The most important of these is that there must exist 
two ordering schemes which have the symmetries of 
a pair of irreducible representations of the space 
group of the disordered structure. Heine & McCon- 
nell (1984) proposed that it is the interactions between 
these two ordering schemes that stabilize the incom- 
mensurate phase, and that this interaction is maxim- 
ized by having them modulated in quadrature. They 
therefore write the scattering density in the crystal 
(McConnell & Heine, 1984) as 

p(r)=pave(r)+pl(r)cosq.r+p2(r)sinq.r (1) 

where Pave(r) is the scattering density of the average 
structure, and pl(r), p2(r) are the differences of the 
two ordering schemes from the average structure. 
These difference structures therefore contain regions 
of positive and negative scattering density, much 
as the difference structures derived from ordering 
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reflections in commensurately ordered structures such 
as simple alloys (Fig. 3). These are modulated in 
quadrature by the sine and cosine terms in which q 
is the wave vector of the modulation. The actual 
structure therefore consists of planar regions, normal 
to the wave vector, in which the structure is Pave(r)+ 
pt(r) followed by Pave(r)+p2(r), then Pave(r)-p~(r) 
etc. Between such regions are areas in which both 
ordering schemes are present. It is clear that when 
such a 'boundary' region approximates the structure 
of both pure components then the incommensurate 
phase is further stabilized. This can therefore be seen 
as the source of the interaction between the ordering 
schemes which stabilizes a modulated structure 
(Heine & McConnell, 1984; McConnell & Heine, 
1985a). 

Such a formulation of the scattering density leads 
to the Bragg reflections in the diffraction pattern of 
a modulated structure being dependent upon the scat- 
tering density distribution, Pave(r), of the average 
structure alone. It also results in a diffraction pattern 
in which only first-order satellite reflections appear. 
The amplitudes of these depend only upon the 
difference densities pl(r), pz(r), and are independent 
of the distribution of atoms in the average structure. 

Structural analysis of such materials can therefore 
proceed by two separate stages. The intensities of the 
Bragg reflections can be used to refine the average 
structure in a conventional manner. However, care 
must be taken, as the average structure contains infor- 
mation about atom displacements in the form of 
closely spaced 'split-atom' sites. The intensity of the 
satellites cannot be processed in such a straight- 
forward manner, as the amplitude of a pair of satel- 
lites is given by (McConnell & Heine, 1984) 

A(g+q)=½A~(g+q)+½iA2(g+q), (2) 

where A(g + q) are the amplitudes of the two satellites 

; I 
(a) 

.V2 . 1 / 2  

" i  I° 
v v 

(b) 
• 1/2 * 1/2 
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(c) (d) 

Fig. 3. Ordering in a simple A B  structure. In the average structure 
(a) each site is statistically occupied by 0.5A+0.5B. (b) On 
ordering of the atoms two sites may be distinguished by their 
occupancies. The difference structure (c) is simply the difference 
between the ordered and disordered states. The weights represent 
the magnitude of the difference from the average structure in 
units of A atoms (filled circles). The difference Patterson map 
(d) is the Patterson map of the difference structure in (c). 

at +q from the Bragg position g, and Ai(g+q) are 
the structure factors arising from the difference struc- 
ture pi(r). Each individual satellite therefore contains 
contributions from both difference structures, unless 
there is a systematic absence for one component at 
g. In order to refine the difference structures p~(r) 
and p2(r) it is necessary to deconvolute the data 
present in the satellites. This requires prior knowledge 
of the difference structures, and the refinement pro- 
cess must proceed by a process of iteration in which 
trial difference structures are used in the deconvolu- 
tion, and better trial structures are found by 
refinement to the deconvoluted data. 

Such a process is a 'direct method'. The alternative 
is to use the 'indirect' method of Patterson synthesis. 
McConnell & Heine (1984) showed that there are two 
Patterson functions which may be formed from the 
satellite intensities, and which may be interpreted in 
terms of p,(r) and p2(r). These are termed the 'plus' 
and 'minus' difference Patterson functions, and are 
constructed by respectively adding and subtracting 
each pair of satellite intensities at the Bragg position 
central to each pair. The plus Patterson function is 
then the sum of the Pattersons of p,(r) and p2(r), 
while the minus Patterson function is a cross-correla- 
tion function: 

P+(R) oc ~ pl(r)p,(r + R)+  p2(r)p2(r + R) d3r 
(3) 

P_(R) oc ~ p,(r)p2(r + R ) -  p2(r)pl(r + R) d3r. 

Because the symmetries of p~(r) and p2(r) are one- 
dimensional irreducible representations of a space 
group (Heine & McConnell, 1984), they are iso- 
morphic with black/white or Shubnikov groups 
(Indenbom, 1960). In addition to containing normal 
symmetry operators (even functions), the Shubnikov 
groups also contain operators which are odd func- 
tions (i.e. change sign). The latter relate areas of equal 
positive and negative difference density in the 
difference structures pl(r) and p2(r). Consequently 
the corresponding plus and minus Patterson functions 
contain vector density of both positive and negative 
weights, and possess the symmetries of Shubnikov 
groups. The patterns of weights in the plus and minus 
Patterson functions can therefore be used to identify 
the symmetries of the difference structures p~(r) and 
p2(r), much as conventional Patterson functions con- 
strain the symmetries of conventional structures 
(McConnell & Heine, 1985b). 

The formalism represented by (1) is strictly only 
applicable to structures just below the transition from 
the disordered to the incommensurate phase. 
However, in the absence of satellite reflections of 
higher than first order, there is no information on 
which to base more complex structural analyses. Such 
a case apertains in the current study of mullite, as 
single-crystal precession photographs did not exhibit 
second-order satellites. 
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Patterson functions 

Symmetries 

The hypothetical high-temperature disordered 
phase from which the incommensurately ordered 
mullite may be considered to be derived would have 
the symmetry of the average structure (Pbam). The 
possible symmetries of the difference structures were 
derived by McConnell & Heine (1985a) by considera- 
tion of the symmetry of the ordering vector, ½c* + Isla*. 
The component along c* represents a doubling of the 
c axis of the difference structures relative to that of 
the average structure. Of the four possible pairs of 
irreducible representations of Pbam which could cor- 
respond to the difference structures, only two pairs 
(Table 1) allow any ordering at all within the struc- 
ture. These were designated X~, 2(2 and X7, X8 by 
McConnell & Heine (1985a). They may be distin- 
guished by the signs of the vector density of self-peaks 
at U=~,  W = 0  in the plus Patterson function as 
shown in Fig. 4. In the plus Patterson function calcu- 
lated from the mullite satellites (Fig. 5) all of these 
self-peaks are negative (the peak at V= 0.42 is the 
combination of two peaks corresponding to T*-T* 
vectors with U = 0.48 and U = 0.52). The plus Patter- 
son function therefore shows that the symmetries of 

Xl X 2 

0 O O • 

0 0 0 • 

(a) 

X7 X 8 

• 0 • • 

0 • 0 0 

r V 

(c/ 
Fig. 4. Identification of the irreducible representations corre- 

sponding to the ordering schemes in mullite. (a) The pattern of 
signs of symmetry-related sites (at z = 0) in difference structures 
with symmetries X1, X2 and XT, Xs. The signs of the sites at 
z = ½ are the reverse of those shown in all cases. (b) The difference 
Patterson maps corresponding to these ordering patterns. Only 
that of  XT, possibly with a contribution from Xs, can match the 
Patterson function calculated from the satellite intensities of 
mullite (c). 

the difference structures giving rise to the incom- 
mensurate modulation in mullite have the symmetries 
of the pair of representations X7, Xs. This was the 
conclusion reached by McConnell & Heine (1985a) 
on crystal-chemical grounds. The equivalent Shub- 
nikov space groups are respectively |1'I401"58, Pcnnm, and 
Pcbnm which is a non-standard orientation of uz451 " 6 2  , 
P b n m a .  

These symmetries mean that the difference struc- 
ture with Pcnnm symmetry (X7) does not contribute 
to the satellite pairs around Okl positions with k even, 
while that with Pcbnm symmetry (Xs) does not con- 
tribute to k odd reflections in Okl. Consideration of 
(2) shows that in such a case the intensities of the 
two members of each satellite pair should be equal. 
This was confirmed by a statistical test on the Okl 
satellite pairs which showed that of 364 such pairs 
only 32 (9%) had amplitudes that differed by greater 
than one standard deviation calculated from counting 
statistics. Of these only two pairs were different by 
between 2o" and 3o'. 

Patterson projections 

Because the Okl satellite pairs contain contributions 
from either one difference structure or the other, they 
may be split into two groups, of k even and k odd 
reflections, from which Patterson projections onto 
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Fig. 5. A (001) section at W =  0 of  the plus Patterson function of 
mullite. Both U and V axes run from 0 to 0-6; contours are at 
arbitrary levels, and are dashed for negative values. Peaks iden- 
tified by a single label are 'self-peaks', arising from vectors 
between symmetry-related sites. 
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(100) may be calculated. These projections (Fig. 6) 
are separate projections of the two difference struc- 
tures. 

Because the X-ray scattering factors of aluminium 
and silicon are very similar, vectors in the Patterson 
functions arising from A1/Si ordering on tetrahedral 
sites will be very weak compared with vectors to sites 
on which the overall (A1 plus Si) occupancies are 
changed. The Patterson projection of the P¢nnm com- 
ponent (Fig. 6a) shows strong vectors involving both 
types of tetrahedral site, as well as vectors between 
these and the Oc and Oc* positions. This difference 
structure therefore includes strong ordering of the 
overall occupancies of the tetrahedral sites, as well 
as oxygens and vacancies. By contrast, the Patterson 
projection of the Pcbnm difference structure (Fig. 6b) 
is dominated by vectors to the Oc* site, indicating 
that overall tetrahedral site occupancies are less 
ordered in this component than the displacements of 
the oxygens around the Oc position. The weaker 
vectors to the tetrahedral sites appear to arise from 
ordering of aluminium and silicon. The absence of 
vectors to Oc sites from Fig. 6(b) should also be 
noted. This is because the Oc site occupies symmetry 

1 1 centres at ~,0,~ (and equivalents) in the average struc- 
ture, which become anticentres in Pcbnm. Ordering 
on the Oc site is therefore not allowed in this 
difference structure, and is restricted to that with 
Pcnnm symmetry. 

Both Patterson projections show significant vector 
density either side of the plane W = ¼, which can only 

1 3 arise from vectors to the Od sites at heights z - 4 ,  4 
in the ordered (2c) unit cell. The pattern of positive 
and negative lobes in the vector density is characteris- 
tic of small displacements of one of the atoms giving 
rise to the vector (Takeuchi, 1972). In this case, the 
Od sites are displaced parallel to the c axis from z = ¼ 
in both components..These displacements were also 
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Fig. 6. Separate Patterson projections onto (100) of the two 
difference structures. (a) Pcnnm. (b) Pcbnm, peak a is due to 
T*-T* vectors, peak b to Oc*-Oc* vectors, and peak c to 
T*-Oc* and Od-Od vectors. 

apparent in the high-resolution structure refinement 
of this same crystal (Angel & Prewitt, 1986). 

The plus Patterson 

The self peaks in the plus Patterson function (Fig. 
5) constructed from the hkl satellite pairs have already 
been used to identify the symmetries of the difference 
structures. The remaining vector density in P÷ can 
now be interpreted in the light of information 
obtained from the Patterson projections. The latter 
show that tetrahedral site occupancy is far more 
strongly modulated by the Pcnnm difference structure 
than that of Pcbnm symmetry. All of the vectors 
involving the T and T* sites which appear in the plus 
Patterson function can therefore be interpreted, to a 
first approximation, as arising from the Pcnnm 
difference structure. For example, the peak at U = 
0.12, V=0.13,  W = 0  (Fig. 5) is between adjacent T 
and T* sites. Its negative weight indicates that all 
such pairs of sites in the Pcnnm difference structure 
have opposite signs arising from the transfer of atoms 
from one site (negative difference density) to the other 
(positive difference density). 

Analysis of the average structure (Angel & Prewitt, 
1986) showed that the Oab oxygen site undergoes 
small displacements within the (001) plane depending 
upon which of the T or T* sites is occupied. Several 
peaks in the plus Patterson function can be assigned 
to vectors involving the Oab sites. The signs of these 
show that the Oab atoms are displaced towards the 
occupied tetrahedral sites in the Pcnnm difference 
structure. In P~bnm this oxygen site is always dis- 
placed towards those T* sites that possess positive 
difference density. 

The minus Patterson 

Equation (3) shows that the minus Patterson func- 
tion is a cross-correlation function between the two 
difference structures p~(r) and p2(r). When ordering 
occurs on the same set of sites in both difference 
structures, as it does in mullite, the P_ function pro- 
vides further information on the ordering patterns. 
In particular, once the symmetries of the two com- 
ponents are known the minus Patterson function 
defines the relative phase of the two components. 
This is necessary because (1) contains a phase 
ambiguity in that the structure it describes is distinct 
from that generated by replacing p~(r) by -p l ( r ) ,  or 
p2(r) by -p2(r). This would be equivalent to a relative 
phase change of zr from a phase difference between 
pl(r) and p2(r) of 7r/2 to one of -zr/2.  In mullite the 
peaks at U = ½ - 2x, V = ½, W = 0 in the minus Patter- 
son function arise from the cross-correlation function 
between the same sets of sites in the two difference 
structures; they are 'self-peaks' whose weight and 
sign depend upon the signs of the difference densities 
of the same sites in the two ordering schemes. Fig. 7 
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shows how the signs of these peaks are dependent 
upon the relative signs of the two ordering patterns 
on a given set of sites in the two difference structures. 

Examination of the minus Patterson function (Fig. 
8) allows the relative signs of the tetrahedral sites in 
the two ordering schemes to be defined. The peak at 
U = 0.02, V = ½, W = 0 arises from the cross-correla- 
tion between T* sites in the two difference structures, 
and its weight is positive. This indicates that the signs 
of the difference density of the T* sites at x = 0.24, 
y = 0.76 are the same in both difference structures. 
By contrast, the T sites at x=0 .15 ,  y = 0 . 3 4  must 
have opposite signs in the two difference structures 
because the peak in the minus Patterson function at 
U = 0.2, V = ½, W = 0 is negative. 

In mullite there is zero ordering on the Oc site in 
the Pcbnm difference structure for symmetry reasons. 
This is confirmed by the absence of any vector density 
at U -- ½, V -- ½, W = 0 in the minus Patterson function 
(Fig. 8). Since the overall tetrahedral site occupancies 
are seen to be correlated with the oxygen/vacancy 
distribution (cf. the average structure), the difference 
density on the tetrahedral sites in the Pcbnm ordering 
scheme must be due to Al/Si ordering. This is in 
contrast to the Pcnnm difference structure in which 
the difference density on the tetrahedral sites is domi- 
nated by the overall occupancy which masks the effect 
of any ordering of aluminium and silicon. 

(a) 
• 0 

0 • 

Pcnnrn 

o . T  

oz % 

ix Pcbnm 

0 0 

• • 

I 
' £ - 4- 

(i) (ii) 13 

Fig. 7. The deduction of the relative phases of pl(r) and p2(r) 
from the minus Patterson function. (a) The ordering pattern in 
Pcnnm for a given set of symmetry-related sites, together with 
the two possibilities in Pcbnm for the same set of sites. The minus 
Patterson function, P_, arising from the combination of  Pcnnm 
ordering pattern with the first of the possibilities with P¢bnrn 
symmetry is shown in (b), that from the second in (c). Parts (i) 
and (ii) in (b) and (c) represent the respective contributions of 
pl(r)p2(r + R) and p2(r)pl(r+ R) (equation 3) to the P_ function. 
Note that the sign of the horizontal ( U = ½- 2x, V = ½, W = 0) 
and diagonal vectors differ in the two cases, and the signs of 
these peaks can be used to distinguish which of the two Pcbnrn 
ordering schemes in (a) represents p2(r). 

The vector density at U = 0.40, V = ½, W = 0 in the 
minus Patterson function arises from the cross-corre- 
lation function between the Oc* sites in the two 
difference structures. The positive sign of this peak 
indicates that the Oc* sites at x = 0.05, y = 0.55 have 
the same sign in both difference structures, a result 
which can also be deduced from the Patterson projec- 
tions (Fig. 6) together with the information on the 
relative signs of the tetrahedral sites provided by the 
minus Patterson function. The remaining peak at 
V = ½ in the minus Patterson function appears to be 
due to a small displacement of the T site parallel to 
the a axis. Such a displacement would also account 
for the pair of peaks in the minus Patterson function 
around U=½, V=0.16 ,  W = 0 .  The peaks in the 
minus Patterson function at more general positions 
are identified in Fig. 8. Their signs are consistent with 
the relative signs of the ordering patterns deduced 
above. 

Discussion 

Analysis of the Patterson functions described above 
identifies the patterns of ordering within the two 
difference structures of mullite (Fig. 9). In some cases 
the relative weights of Patterson peaks give an indica- 
tion of the relative magnitude of the ordering on 
various sites. However, the absolute amplitude of 
these ordering schemes is not defined; we do not 
know whether a particular site is as fully ordered as 
possible (maximally ordered), or whether it only 
attains a state of partial order. Calorimetric data 
on incommensurate 'e'-plagioclases (Carpenter, 
McConnell & Navrotsky, 1985) suggest that they 
attain the maximum possible state of order allowed 
by the constraints of the structure. In the absence of 
any evidence to the contrary we will therefore assume 
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Fig. 8. A (001) section at W =  0 of the minus Patterson function 
of mullite over the same region of vector space, and scaled 
identically to the plus Patterson function of Fig. 5. 
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for the sake of discussion that the mullite crystal 
studied here is maximally ordered. 

In incommensurate structures the occupancy 
of any given site is represented by p ( r ) =  
pave(r)+pl(r) cos q.  r+p2(r)  s inq .  r (equation 1). 
Every site within the crystal must have an occupancy 
given by p(r) which is between zero and unity. There- 
fore, in order to calculate the maximum amplitudes 
of pl(r) and p2(r) permitted, the average occupancies 
of the sites within the crystal must also be known. 
These were determined for this mullite crystal by 
Angel & Prewitt (1986) and are listed in Table 2. The 
ranges of site occupancies given in Table 2 then 
represent the maximum allowed variation in this crys- 
tal. Analysis of the Patterson functions indicates that 
almost all of this variation occurs in the Pcnnm 
difference structure. 

The resultant pure component structures, based 
upon the application of the principal of maximal 
ordering to mullite, are drawn in Fig. 10. They are 
the actual structure of the crystal on planes where 
the value of q.  r (equation 1) is such that one or other 
of the difference structures does not contribute to 
p(r). For example, where q. r=2nTr (n integral), 
sin q. r is zero, and the structure consists of Pave(r) + 
p~(r). It is in these pure component structures, and 
in the difference structures which generate them, that 
the crystal-chemical basis for the stability of mullite 
is to be found. 

As described in the Introduction, the major feature 
of the Pcnnm difference structure is the ordering of 
oxygens and vacancies on the Oc sites. It should be 
noted that it is the overall occupancy by O atoms of 
the region around this site that is ordered (i.e. Oc 
plus 2Oc*). The small displacements from the sym- 
metry centre of - 0 . 5  A, represented by the Oc* sites, 
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Fig. 9. The patterns of difference density in sections at z = ½ for 
the two ordering schemes. @/O = positive/negative density on 
tetrahedral sites; + / -=pos i t i ve /nega t ive  density on Oc and 
Oc* sites. Arrows indicate the direction of displacement of Oab 
oxygens, and q)/E) the displacements (up/down) of the Od sites 
at z=¼. The key below identifies the sites in the upper left 
quadrant of  each difference structure. 

Table 2. Site occupancies 

P c / i n t o  

Averaget Amplitude Range 

T 0.81 (3) 0"8 +0.2 0-6-1-0 
T* 0.19 (3) 0.2 -0-2 0.4-0.0 
Oc+2Oc* 0.77 (3) 0"8 +0.2 0.6-1.0 
Oc 0.39 (1) 0.4 +0.1 0-3-0"5 
Oc* 0.19 (1) 0.2 +0.05 0.15-0.25 

t Average site occupancies from Angel & Prewitt (1986) are 
given in the first column and rounded off in the second. The latter 
correspond to values in Fig. 10. 

are a secondary effect. Coupled to this oxy- 
gen/vacancy ordering is a transfer of atoms between 
adjacent T and T* sites, as indicated by their opposite 
signs in the difference structure (Fig. 9a). Application 
of the principle of maximal ordering (Table 2) gener- 
ates a pure component structure which has two types 
of tetrahedral environment (Fig. 10a). 

In one half of this pure component the T site is 
fully occupied and T* is completely vacant, while in 
the other half a transfer of atoms from T to T* 
doubles the occupancy of T* relative to the average 
structure. For the reasons discussed above it is not 
possible to derive directly from the Pattersons the 
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Fig. 10, Sections at z = ½ of the pure component structures derived 

from applying the principle of maximal ordering to the difference 
ordering patterns of Fig. 9 and the average structure determined 
by Angel & Prewitt (1986). Site occupancies are given only for 
partially occupied sites. Arrows indicate displacements of Oab 
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distribution of aluminium and silicon in this com- 
ponent. However, the displacements of the coordinat- 
ing atoms may be used to infer differences in the 
Si:A1 ratio between tetrahedral sites. Bonds between 
Si and O tend to be shorter than AI-O linkages in 
the same environment, so that movement of O atoms 
towards a tetrahedral site may indicate an increase 
in its Si : A1 ratio in the component structure over that 
in the average structure. Care must be taken not to 
confuse this effect with that seen, for example, for 
the Oab site in the Pcnnrn difference structure, which 
always moves towards the tetrahedral site whose 
occupancy is increased relative to the average 
structure. 

The movements of the Od atoms are always 
towards the more occupied T sites, and away from 
the more occupied T* sites, in the Pcnnm difference 
structure (Fig. 9a). The fact that this movement is 
also towards the more occupied Oc sites and away 
from vacancies suggests that it is caused by T-Od 
bonding requirements over and above Oc-Od repul- 
sion. This shortening of T-Od bonds suggests that 
the T sites adjacent to occupied Oc sites are enriched 
in silicon relative to the average structure. The 
coupled increase in the length of the bond between 
the Od atom and the more occupied T* site in the 
adjacent layer suggests in turn that the latter site is 
enriched in aluminium. 

The third oxygen site in the structure is Oc, which 
is the central bridging atom of the tetrahedral double 
chains. The Oc* site has often been interpreted in the 
average structure as a displacement imposed upon 
the Oc oxygen by the occupation of an adjacent T* 
tetrahedral site. If this were the case then the 
occupancy of the Oc* site in the pure Pcnnrn com- 
ponent would be equal to that of the adjacent T* 
sites. However, when the average occupancies are 
taken into account, this would result in the occupan- 
cies of adjacent Oc and Oc* sites being ordered in 
antiphase. This is in contradiction to the evidence 
from the Patterson functions which constrains the 
signs of these two sites in the P~nnm difference struc- 
ture to be the same (Fig. 9a). The occupancies 
assigned to these sites in the pure component structure 
(Fig. 10a) satisfy this condition, but may well be of 
incorrect magnitude. Even so, it may be deduced that 
the displacement of the Oc oxygen off the symmetry 
point is not dependent exclusively upon the 
occupancy or otherwise of the adjacent T* site, but 
probably also depends upon the species in both that 
site and the two T sites bonded to it. 

The P~bnm component structure is not allowed by 
symmetry to order oxygens and vacancies on the Oc 
site. There is therefore no need for the ordering 
scheme to vary the overall occupancy of the tetrahe- 
dral sites. The difference density at the tetrahedral 
sites in the P~bnm difference structure (Fig. 9b) has 
therefore been interpreted as arising from Al/Si 

ordering, with positive difference density representing 
an increase in the Si:A1 ratio of a site relative to that 
found in the average structure. The displacements 
associated with all three oxygen sites support his 
intepretation. The Oab site moves towards Si- 
enriched tetrahedral sites, while the Od site is dis- 
placed towards Si-enriched T* sites at the expense 
of lengthening the bonds to Si-enriched T sites. The 
displacement of the bridging oxygen of the tetrahe- 
dral double chains, represented by the occupancy 
pattern of the Oc* site, is also away from Al-enriched 
T sites and towards Si-enriched ones. This is similar 
to the pattern of displacements of the bridging oxygen 
in sillimanite (which does not have any T* sites), but 
its different direction indicates that in this component 
the primary influence on the displacement of the Oc 
oxygen is the species occupying the T* site. 

It is interesting to note that the pattern of move- 
ments of the Oab and Od sites associated with the 
Pcbnm component structure is exactly that seen in 
sillimanite with decreasing temperature (Winter & 
Ghose, 1979). So not only does the Pcbnm component 
order aluminium and silicon on the sillimanite 
scheme, but the structural distortions also parallel 
those of the sillimanite structure. Unfortunately, the 
structure of ~-alumina, which may well resemble that 
of the P~nnm component, has yet to be refined. No 
doubt similar parallels between this component and 
its corresponding end-member structure will become 
obvious once this work is carried out. 

Heine & McConnell (1984) have shown how, in 
general terms, the stabilization energy of an incom- 
mensurate structure can arise from it employing two 
ordering schemes. In brief, because of the difference 
in symmetry between these two ordering schemes 
their interaction has to be of the gradient type. This 
means that the interaction occurs where the amplitude 
of one ordering scheme is decreasing and the other 
is increasing. That is, at the 'boundary' where one 
ordering scheme is giving way to the other, the two 
overlap. In the case of mullite, ttfe two ordering 
schemes fit together in such a way that the last atomic 
plane of one is identical to the first atomic plane of 
the next, i.e. the two patterns overlap on that plane. 
This is shown in Fig. 11 for a complete cycle of q.  r 
from zero to 2rr for a value of Iql equal to ½1a*l. Note 
that the sequence p~, p2, -p~,  - p 2 , . . .  (and not pl, 
- p 2 , - p l ,  p 2 , . . . )  is uniquely determined by the 
minus Patterson function. The figure indicates why 
mullite is so stable. Fully one third of the crystal 
volume satisfies both ordering schemes simul- 
taneously. This large region of overlap between the 
pure component structures is the source of the interac- 
tion which makes mullite such a stable refractory 
material. 

This study has therefore identified the main aspects 
of the two ordering schemes in mullite, has confirmed 
the symmetry analysis of McConnell & Heine 
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(1985a), and has demonstrated the power of the 
analytical methods developed by McConnell & Heine 
(1984, 1985b). However, some work remains to be 
done. The amplitudes of the ordering schemes cannot 
be reliably determined from the Patterson functions, 
and must be obtained by direct refinement of the 
component structures. Secondly, the A1/Si ordering 
pattern proposed here for the Pcnnm difference struc- 
ture was deduced from the pattern of oxygen displace- 
ments. Such a deduction needs to be confirmed by 
neutron diffraction studies which will be capable of 
distinguishing directly between Si and AI atoms. 

RJA thanks Desmond McConnell for suggesting 
this project, and for drawing his attention to the 
techniques he has developed for the analysis of 
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Fig. 11. The pattern of difference density in a mullite with a 
modulation vector of about ½a*. Only T sites (O/C)= Si/A1) 
and Oc-Oc*  oxygen sites ( I /x=occupied/disordered)  are 
shown. The regions of overlap between pt(r), p2(r) etc., where 
both ordering patterns are satisfied are indicated. Note that all 
the 'boundaries' between the pure components exhibit overlap, 
and therefore stabilize the modulation. 

incommensurate structures. We also thank Desmond 
McConnell and Volker Heine for their contributions 
to this work in the form of extensive discussions and 
comments on the analysis and this manuscript. The 
assistance of K. J. Baldwin with the diffractometry 
and computer programming involved in this project, 
and the support of NATO in the form of an Overseas 
Research Fellowship to RJA, is also gratefully 
acknowledged. The work was supported by NSF grant 
EAR83-19504 to CTP. 

R e f e r e n c e s  

AGRELL, S. O. & SMITH, J. V. (1960). J. Am. Ceram. So¢. 43, 69-76. 
ANGEL, R. J. & PREWITT, C. T. (1986). Am. Mineral. 71, 1476- 

1482. 
BURNHAM, C. W. (1964). Carnegie Inst. Washington Yearb. 63, 

223-228. 
CAMERON, W. E. (1977a). Am. Mineral. 62, 747-755. 
CAMERON, W. E. (1977b). Am. Ceram. So¢. Bull. 56, 1003-1007. 
CARPENTER, M. A., MCCONNELL, J. D. C. & NAVROTSKY, A. 

(1985). Geochim. Cosmochim. Acta, 49, 947-966. 
COCHRAN, W. E. (1968). Inelastic Neutron Scattering, Vol. 1, pp. 

275-280. Vienna: International Atomic Energy Agency. 
DUROVIC, S. (1969). Chem. Zvesti, 23, 113-128. 
DUROVIC, S. & FEJDI, P. (1976). Silikaty, 20 ,  972112. 
FREUH, A. J. (1953). Acta Cryst. 6, 454-456. 
HEINE, V. & MCCONNELL, J. D. C. (1984). J. Phys. C, 17, 

1199-1220. 
INDENBOM, V. L. (1960). Soy. Phys. Crystallogr. 4, 578-580. 
MCCONNELL, J. D. C. & HEINE, V. (1984). Acta Cryst. A~I0, 

473-482. 
MCCONNELL, J. D. C. & HEINE, V. (1985a). Phys. Rev. B, 31, 

6140-6142. 
MCCONNELL, J. D. C. & HEINE, V. (1985b). Acta Cryst. A41, 

382-386. 
MATTHEWMAN, J. C., THOMPSON, P. & BROWN, P. J. (1982). J. 

Appl. Cryst. 15, 167-173. 
NAKAJIMA, Y. & RIBBE, P. H. (1981). Am. Mineral. 66, 142-147. 
SAALFELD, H. (1979). Neues Jahrb. Mineral. Abh. 134, 305-316. 
SADANAGA, R., TOKONAMI, M. & TAKEUCHI, Y. (1962). Aeta 

Cryst. 15, 65-68. 
TAKEUCHI, Y. (1972). Z. Kristallogr. 135, 120-136. 
TOKONAMI, M., bIAKAJIMA, Y. & MORIMOTO, N. (1980). Acta 

Cryst. A36, 270-276. 
WINTER, J. K. &. GHOSE, S. (1979). Am. Mineral. 64, 573-586. 
YLA-JASAKI, J. & NISSEN, H.-U. (1983). Phys. Chem. Mineral. 

10, 47-54. 


